Neurotechnology company logo
Menu button

About Neurotechnology

Neurotechnology was founded in Vilnius, Lithuania in 1990 with the key idea of using neural networks for applications such as biometric person identification, computer vision, robotics and artificial intelligence. Much to our delight, we were able to endure the "neural networks winter" by using and expanding this expertise all through 2012, the year that brought explosive developments in the concept and infrastructure of deep neural networks. This allowed us to quickly take advantage of the emerging opportunities that came with the new wave of deep learning and triggered an entire range of new projects in object recognition and other applications. Currently, our team is comprised of more than 100 employees, 15% of whom hold a Ph.D. and half of our employees are actively involved in R&D activities.

History

In 1991, a year after foundation, we released our first fingerprint identification system for criminal investigations. Our further research endeavors resulted in the first fingerprint identification algorithm for civil uses, which was made public in 1997. In 2002, our researchers began developing a solution for recognizing faces and we released our first facial recognition product in 2004. This was followed by our algorithms for iris recognition released in 2008, and palmprint identification in 2009. In addition, since 2011 we have maintained an ongoing research program in voice recognition.

Once we conceived of the benefits of fusing several biometric modalities, we directed our efforts toward building a multi-biometric product. Released in 2005 under the name MegaMatcher Software Development Kit, the initial version could support recognition of fingerprints and faces. Modalities for iris and voice recognition were added later. From the date of its release in 2005, our MegaMatcher SDK gained acceptance as a key solution in large and national-scale projects related to issuance of passports, de-duplication of voters, etc. For instance, our customers in Bangladesh used the technology for de-duplication of voters in their 2008 election. As another example, the MegaMatcher SDK has been used for passport issuance for Indonesian nationals since 2009. There are many more similar projects as well.

Since applications of this type put extreme requirements on 1:N matching performance, we have spent a lot of our R&D effort on solving this problem. To speed the matching process, we released MegaMatcher Accelerator in 2009. Originally it was used for the fingerprint modality only, but then we added face and iris modalities. In 2016, we released MegaMatcher ABIS to provide the best solution for customers willing to have end-user software instead of an SDK. In 2018, we used MegaMatcher ABIS during the large-scale voter de-duplication campaign in the Democratic Republic of the Congo. We carried out a number of similar projects in other countries as well.

In response to market demands, since 2000 we have also been involved in developing a range of products for smartcard-based biometrics and embedded applications, as well as some end-user products.

In 2004, to better accommodate the growing volumes of research in artificial intelligence, the company founded its robotics division, which began research in the field of mobile autonomous robots.

In 2009, to assist our customers in selecting suitable hardware for their implementations of biometric systems, we started Biometric Supply. This subsidiary offers a wide range of fingerprint readers and iris scanners from multiple manufacturers.

The year 2012 was rich with events for Neurotechnology. To take advantage of the new opportunities brought by rapid growth of cloud technologies, we started SkyBiometry. This subsidiary now provides face detection and recognition software as a cloud-based service. Also in 2012, a strategic decision was made to start a division in Sri Lanka. The team of developers there is now the prime force in developing our biometric solutions for attendance systems.

In 2014, Neurotechnology began to undertake research in the fields of ultrasonic particle manipulation, parametric array and transducer technology.

In 2018, Neurotechnology released SentiBotics Navigation SDK for the development of autonomous robot navigation.

In 2022, Neurotechnology showed its new SentiBotics SP800 autonomous robotics solution at the Hannover Messe.

Neural Networks and AI

In more than 30 years of our activity, we have accumulated substantial experience in the area of neural networks. This allowed us to develop a multitude of product capabilities based on deep learning as well as customer applications.

Deep neural networks are able to solve many problems - such as image classification, object detection, or instance segmentation - more efficiently than traditional computer vision algorithms. To facilitate this process, we have built a technology that has tools to support developing AI-based object recognition applications.

In the area of face recognition, the last few years witnessed a dramatic reduction in error rates brought by new algorithms that are based on convolutional neural networks (CNN). Our company started using CNNs for the task of face recognition in 2013. The first application of neural networks alone resulted in an improvement in the accuracy of unconstrained face recognition by a factor of 15 times! We expect further improvements in face recognition performance due to explosive development of architectures and techniques related to CNNs.

As deep learning techniques kept proliferating other areas, we were ultimately able to employ our face recognition algorithms under the conditions of real-time surveillance. By being able to recognize and track other objects - such as pedestrians and all kinds of vehicles (cyclists, bikes, cars, buses, trucks, etc.) - in adjacent video frames, we can extract various pieces of information about those objects, for example the color of the vehicle or the direction of its movement. There is a separate modality for recognizing license plates of vehicles using neural networks.

Our latest improvements in other biometric modalities are also driven by extensive research in deep neural networks. This includes the most interoperable fingerprint algorithm in the world (ranked the first in the NIST MINEX interoperability category), the second most accurate iris recognition technology and the new version of our algorithm for speaker identification.

As another illustration of our achievements in using deep learning, Neurotechnology's researchers won first place in the 2017 Kaggle competition with a computer vision solution for classifying fish species.

In 2021 we have received the "AI Company of the Year" award from the Artificial Intelligence Association of Lithuania.

We seek to distill our knowledge and understanding of how natural intelligence operates into deep-learning-based algorithms, and we see this approach as the shortest path toward achieving General AI. Neurotechnology also runs Deep Learning Paper Reviews, a series of open-access events devoted to sharing and discussing recent ideas in the field.

Biometric Technologies and Products

We have a reputation for developing a range of products for biometric identification of fingerprints, palm prints, faces, irises and voices. Since the release of our first fingerprint identification system, we have delivered more than 200 products and version upgrades for identification and verification of objects and personal identity. Over 3,000 system integrators, security companies and hardware providers in more than 140 countries integrate our algorithms into their products.


Watch on YouTube: English, Español, Français.

With a combination of fast algorithms and high reliability, our company's fingerprint, face, iris, voice and palmprint biometric technologies can be used for access control, computer security, banking, time attendance control and law enforcement applications, among others.

With millions of customer installations worldwide, our products are used for both civil and forensic applications, including border crossings, criminal investigations, systems for voter registration, verification and duplication checking, passport issuance and other national-scale projects.

Neurotechnology's fingerprint identification algorithms have shown top results for reliability in major biometric competitions and evaluations, including the National Institute of Standards & Technology (NIST) Minutiae Interoperability Exchange III (MINEX III), Proprietary Fingerprint Template Evaluation II (PFT II) and Fingerprint Vendor Technology Evaluation for the US Department of Justice (FpVTE 2012), as well as the FVC-onGoing evaluation. Previously, the fingerprint recognition algorithms have received awards in the International Fingerprint Verification Competitions (FVC2006, FVC2004, FVC2002 and FVC2000).

In 2018, our iris recognition algorithm was tested in the NIST Iris Exchange (IREX) Evaluation and was recognized as the second most accurate among those tested. The accelerated version of the algorithm was nearly 50 times faster than any other matching system in the NIST IREX IX evaluation. Previously, Neurotechnology showed outstanding results in the IREX, IREX III and IREX IV evaluations.

In 2019 our palm print matching algorithm has shown the top result at the FVC-onGoing evaluation, being the most accurate overall and fastest among the five most accurate matchers.

Neurotechnology has been issued patents for its fingerprint recognition technology in Japan and USA.

Computer Vision

To meet the demands of a variety of applications, we developed many advanced algorithms based on computer vision. For instance, they are used in SentiSight.ai, our interactive web platform for developing AI-based image recognition applications. The platform has tools designed to support interactive model training - without coding - and faster image labeling, thus reducing the amount of manual work. We also run projects tailored to the specific needs of our customers (i.e. aerial image analysis).

Our technology for real-time surveillance was designed to support biometric face identification of moving pedestrians using live video streams from high-resolution digital cameras. The technology is used for passive identification, when passers-by do not make any efforts to be recognized. Possible uses for this technology include law enforcement, security, attendance control, visitor counting, traffic monitoring and other commercial applications.

Some of our earlier R&D efforts related to computer vision also involved technologies for eye movement tracking.

Natural Language Processing

We are developing deep learning-based NLP (Natural Language Processing) models for deriving meaningful insights from noisy text-based data. Our NLP technologies allow to calculate sentiment and context related to a certain subject using mass-scale, real-time monitoring of recent news, blogs, user comments and social media posts.

We have applied neural networks to create an NLP-based online platform for stock market analysis, which allows to monitor the current popularity of publicly traded companies. The platform is intended for investors and stock traders who need a simple and convenient AI-based tool for analyzing news on a massive scale, so they can make faster decisions regarding stocks of interest.

Another recent NLP-based solution is an online service for monitoring mobile app reviews, which recognizes positive or negative sentiments and particular contexts in comments left by app users. The solution is suitable for marketing specialists, app developers or small/medium businesses, as it offers easy-to-understand charts and configurable reports

Robotics

Our current R&D effort in robotics is focused on the "programming by demonstration" approach and its practical implementation in various neural network structures. During our experiments we not only gained experience with different types of neural networks (e.g., various CNNs, RNNs, including RNNs with external memory, the self modifying RNN and the CMP, Cognitive Mapping and Planning), we also developed our own theoretical innovations.

Brain-computer Interface

Our researchers are working on developing brain-computer interface (BCI) solutions which use electroencephalography (EEG) for measuring brain activity and specialized software for recognizing certain patterns. The R&D activities are performed in several areas, which include developing easy-to-use dry-contact electrodes, ultra-compact electroencephalographs and all necessary software for processing the EEG signals.

BrainAccess Development Kit offers a full dry-contact EEG solution including the electrodes, headwear, electroencephalograph, several BCI algorithms, as well as EEG signal acquisition and processing software. BrainAccess Kit can be used to develop applications where a person controls a computer or other device through activities such as eye movements, visual focus, relaxation state or other subtle changes that can be detected in the user's EEG signal patterns.

Ultrasound Technologies

We undertake research in the fields of ultrasonic particle manipulation, parametric array and transducer technology. Novel algorithms, hardware and electronics solutions for ultrasonic applications are being developed. Currently, we are working on a new, patent-pending 3D printing and assembling technology based on ultrasonic particle manipulation. This new technology is intended to expand capabilities of existing 3D printing and assembling processes.

In 2018, we also filed a patent for a novel ultrasonic electrostatic transducer technology. These transducers were developed primarily for use in parametric array systems. In 2019, Focusonics directional speaker, based on the patent-pending method of using ultrasonic waves to reproduce sound, was introduced.

Shareholders information

Neurotechnology is fully owned by Dr. Algimantas Malickas (algimantas@neurotechnology.com).

Facebook icon   LinkedIn icon   Twitter icon   Youtube icon   Email newsletter icon
Copyright © 1998 - 2025 Neurotechnology